Net::Server man page on Mageia

Man page or keyword search:  
man Server   17783 pages
apropos Keyword Search (all sections)
Output format
Mageia logo
[printable version]

Net::Server(3)	      User Contributed Perl Documentation	Net::Server(3)

NAME
       Net::Server - Extensible, general Perl server engine

SYNOPSIS
	   #!/usr/bin/perl -w -T
	   package MyPackage;

	   use base qw(Net::Server);

	   sub process_request {
	       my $self = shift;
	       while (<STDIN>) {
		   s/[\r\n]+$//;
		   print "You said '$_'\015\012"; # basic echo
		   last if /quit/i;
	       }
	   }

	   MyPackage->run(port => 160, ipv => '*');

	   # one liner to get going quickly
	   perl -e 'use base qw(Net::Server); main->run(port => 20208)'

	   NOTE: beginning in Net::Server 2.005, the default value for
		 ipv is IPv* meaning that if no host is passed, or
		 a hostname is past, any available IPv4 and IPv6 sockets will be
		 bound.	 You can force IPv4 only by adding an ipv => 4
		 configuration in any of the half dozen ways we let you
		 specify it.

FEATURES
	   * Full IPv6 support
	   * Working SSL sockets and https (both with and without IO::Socket::SSL)
	   * Single Server Mode
	   * Inetd Server Mode
	   * Preforking Simple Mode (PreForkSimple)
	   * Preforking Managed Mode (PreFork)
	   * Forking Mode
	   * Multiplexing Mode using a single process
	   * Multi port accepts on Single, Preforking, and Forking modes
	   * Basic HTTP Daemon (supports IPv6, SSL, full apache style logs)
	   * Basic PSGI Daemon
	   * Simultaneous accept/recv on tcp/udp/unix, ssl/tcp, and IPv4/IPv6 sockets
	   * Safe signal handling in Fork/PreFork avoids perl signal trouble
	   * User customizable hooks
	   * Chroot ability after bind
	   * Change of user and group after bind
	   * Basic allow/deny access control
	   * Pluggable logging (Sys::Syslog, Log::Log4perl, log_file, STDERR, or your own)
	   * HUP able server (clean restarts via sig HUP)
	   * Graceful shutdowns (via sig QUIT)
	   * Hot deploy in Fork and PreFork modes (via sig TTIN and TTOU)
	   * Dequeue ability in all Fork and PreFork modes.
	   * Taint clean
	   * Written in Perl
	   * Protection against buffer overflow
	   * Clean process flow
	   * Extensibility

DESCRIPTION
       "Net::Server" is an extensible, generic Perl server engine.

       "Net::Server" attempts to be a generic server as in "Net::Daemon" and
       "NetServer::Generic".  It includes with it the ability to run as an
       inetd process ("Net::Server::INET"), a single connection server
       ("Net::Server" or "Net::Server::Single"), a forking server
       ("Net::Server::Fork"), a preforking server which maintains a constant
       number of preforked children ("Net::Server::PreForkSimple"), or as a
       managed preforking server which maintains the number of children based
       on server load ("Net::Server::PreFork").	 In all but the inetd type,
       the server provides the ability to connect to one or to multiple server
       ports.

       The additional server types are made possible via "personalities" or
       sub classes of the "Net::Server".  By moving the multiple types of
       servers out of the main "Net::Server" class, the "Net::Server" concept
       is easily extended to other types (in the near future, we would like to
       add a "Thread" personality).

       "Net::Server" borrows several concepts from the Apache Webserver.
       "Net::Server" uses "hooks" to allow custom servers such as SMTP, HTTP,
       POP3, etc. to be layered over the base "Net::Server" class.  In
       addition the "Net::Server::PreFork" class borrows concepts of
       min_start_servers, max_servers, and min_waiting servers.
       "Net::Server::PreFork" also uses the concept of an flock serialized
       accept when accepting on multiple ports (PreFork can choose between
       flock, IPC::Semaphore, and pipe to control serialization).

PERSONALITIES
       "Net::Server" is built around a common class (Net::Server) and is
       extended using sub classes, or "personalities".	Each personality
       inherits, overrides, or enhances the base methods of the base class.

       Included with the Net::Server package are several basic personalities,
       each of which has their own use.

       Fork
	   Found in the module Net/Server/Fork.pm (see Net::Server::Fork).
	   This server binds to one or more ports and then waits for a
	   connection.	When a client request is received, the parent forks a
	   child, which then handles the client and exits.  This is good for
	   moderately hit services.

       INET
	   Found in the module Net/Server/INET.pm (see Net::Server::INET).
	   This server is designed to be used with inetd.  The "pre_bind",
	   "bind", "accept", and "post_accept" are all overridden as these
	   services are taken care of by the INET daemon.

       MultiType
	   Found in the module Net/Server/MultiType.pm (see
	   Net::Server::MultiType).  This server has no server functionality
	   of its own.	It is designed for servers which need a simple way to
	   easily switch between different personalities.  Multiple
	   "server_type" parameters may be given and Net::Server::MultiType
	   will cycle through until it finds a class that it can use.

       Multiplex
	   Found in the module Net/Server/Multiplex.pm (see
	   Net::Server::Multiplex).  This server binds to one or more ports.
	   It uses IO::Multiplex to multiplex between waiting for new
	   connections and waiting for input on currently established
	   connections.	 This personality is designed to run as one process
	   without forking.  The "process_request" method is never used but
	   the "mux_input" callback is used instead (see also IO::Multiplex).
	   See examples/samplechat.pl for an example using most of the
	   features of Net::Server::Multiplex.

       PreForkSimple
	   Found in the module Net/Server/PreFork.pm (see
	   Net::Server::PreFork).  This server binds to one or more ports and
	   then forks "max_servers" child process.  The server will make sure
	   that at any given time there are always "max_servers" available to
	   receive a client request.  Each of these children will process up
	   to "max_requests" client connections.  This type is good for a
	   heavily hit site that can dedicate max_server processes no matter
	   what the load.  It should scale well for most applications.	Multi
	   port accept is accomplished using either flock, IPC::Semaphore, or
	   pipe to serialize the children.  Serialization may also be switched
	   on for single port in order to get around an OS that does not allow
	   multiple children to accept at the same time.  For a further
	   discussion of serialization see Net::Server::PreFork.

       PreFork
	   Found in the module Net/Server/PreFork.pm (see
	   Net::Server::PreFork).  This server binds to one or more ports and
	   then forks "min_servers" child process.  The server will make sure
	   that at any given time there are at least "min_spare_servers" but
	   not more than "max_spare_servers" available to receive a client
	   request, up to "max_servers".  Each of these children will process
	   up to "max_requests" client connections.  This type is good for a
	   heavily hit site, and should scale well for most applications.
	   Multi port accept is accomplished using either flock,
	   IPC::Semaphore, or pipe to serialize the children.  Serialization
	   may also be switched on for single port in order to get around an
	   OS that does not allow multiple children to accept at the same
	   time.  For a further discussion of serialization see
	   Net::Server::PreFork.

       Single
	   All methods fall back to Net::Server.  This personality is provided
	   only as parallelism for Net::Server::MultiType.

       HTTP
	   Not a distinct personality.	Provides a basic HTTP daemon.  This
	   can be combined with the SSL or SSLEAY proto to provide an HTTPS
	   Daemon.  See Net::Server::HTTP.

       "Net::Server" was partially written to make it easy to add new
       personalities.  Using separate modules built upon an open architecture
       allows for easy addition of new features, a separate development
       process, and reduced code bloat in the core module.

SOCKET ACCESS
       Once started, the Net::Server will take care of binding to port and
       waiting for connections.	 Once a connection is received, the
       Net::Server will accept on the socket and will store the result (the
       client connection) in $self->{server}->{client}.	 This property is a
       Socket blessed into the the IO::Socket classes.	UDP servers are
       slightly different in that they will perform a recv instead of an
       accept.

       To make programming easier, during the post_accept phase, STDIN and
       STDOUT are opened to the client connection.  This allows for programs
       to be written using <STDIN> and print "out\n" to print to the client
       connection.  UDP will require using a ->send call.

SAMPLE CODE
       The following is a very simple server.  The main functionality occurs
       in the process_request method call as shown below.  Notice the use of
       timeouts to prevent Denial of Service while reading.  (Other examples
       of using "Net::Server" can, or will, be included with this
       distribution).

	   #!/usr/bin/perl -w -T

	   package MyPackage;

	   use strict;
	   use base qw(Net::Server::PreFork); # any personality will do

	   MyPackage->run;

	   # over-ride the default echo handler

	   sub process_request {
	       my $self = shift;
	       eval {

		   local $SIG{'ALRM'} = sub { die "Timed Out!\n" };
		   my $timeout = 30; # give the user 30 seconds to type some lines

		   my $previous_alarm = alarm($timeout);
		   while (<STDIN>) {
		       s/\r?\n$//;
		       print "You said '$_'\r\n";
		       alarm($timeout);
		   }
		   alarm($previous_alarm);

	       };

	       if ($@ =~ /timed out/i) {
		   print STDOUT "Timed Out.\r\n";
		   return;
	       }

	   }

	   1;

       Playing this file from the command line will invoke a Net::Server using
       the PreFork personality.	 When building a server layer over the
       Net::Server, it is important to use features such as timeouts to
       prevent Denial Of Service attacks.

       Net::Server comes with a built in echo server by default.  You can test
       it out by simply running the following from the commandline:

	   net-server

       If you wanted to try another flavor you could try

	   net-server PreFork

       If you wanted to try out a basic HTTP server you could use

	   net-server HTTP

       Or if you wanted to test out a CGI you are writing you could use

	   net-server HTTP --app ../../mycgi.cgi

ARGUMENTS
       There are at least five possible ways to pass arguments to Net::Server.
       They are passing to the new method, passing on command line, passing
       parameters to run, using a conf file, returning values in the
       default_values method, or configuring the values in
       post_configure_hook.

       The "options" method is used to determine which arguments the server
       will search for and can be used to extend the parsed parameters.	 Any
       arguments found from the command line, parameters passed to run, and
       arguments found in the conf_file will be matched against the keys of
       the options template.  Any commandline parameters that do not match
       will be left in place and can be further processed by the server in the
       various hooks (by looking at @ARGV).  Arguments passed to new will
       automatically win over any other options (this can be used if you would
       like to disallow a user passing in other arguments).

       Arguments consist of key value pairs.  On the commandline these pairs
       follow the POSIX fashion of "--key value" or "--key=value", and also
       "key=value".  In the conf file the parameter passing can best be shown
       by the following regular expression:
       ($key,$val)=~/^(\w+)\s+(\S+?)\s+$/.  Passing arguments to the run
       method is done as follows: "<Net::Server->run(key1 =" 'val1')>>.
       Passing arguments via a prebuilt object can best be shown in the
       following code:

	   #!/usr/bin/perl -w -T

	   package MyPackage;
	   use strict;
	   use base qw(Net::Server);

	   my $server = MyPackage->new({
	       key1 => 'val1',
	   });

	   $server->run;

       All five methods for passing arguments may be used at the same time.
       Once an argument has been set, it is not over written if another method
       passes the same argument.  "Net::Server" will look for arguments in the
       following order:

	   1) Arguments passed to the C<new> method.
	   2) Arguments passed on command line.
	   3) Arguments passed to the C<run> method.
	   4) Arguments passed via a conf file.
	   5) Arguments set in the C<default_values> method.

       Additionally the following hooks are available:

	   1) Arguments set in the configure_hook (occurs after new
	      but before any of the other areas are checked).
	   2) Arguments set and validated in the post_configure_hook
	      (occurs after all of the other areas are checked).

       Each of these levels will override parameters of the same name
       specified in subsequent levels.	For example, specifying --setsid=0 on
       the command line will override a value of "setsid 1" in the conf file.

       Note that the configure_hook method doesn't return values to set, but
       is there to allow for setting up configured values before the configure
       method is called.

       Key/value pairs used by the server are removed by the configuration
       process so that server layers on top of "Net::Server" can pass and read
       their own parameters.

ADDING CUSTOM ARGUMENTS
       It is possible to add in your own custom parameters to those parsed by
       Net::Server.  The following code shows how this is done:

	   sub options {
	       my $self	    = shift;
	       my $prop	    = $self->{'server'};
	       my $template = shift;

	       # setup options in the parent classes
	       $self->SUPER::options($template);

	       # add a single value option
	       $prop->{'my_option'} ||= undef;
	       $template->{'my_option'} = \ $prop->{'my_option'};

	       # add a multi value option
	       $prop->{'an_arrayref_item'} ||= [];
	       $template->{'an_arrayref_item'} = $prop->{'an_arrayref_item'};
	   }

       Overriding the "options" method allows for adding your own custom
       fields.	A template hashref is passed in, that should then be modified
       to contain an of your custom fields.  Fields which are intended to
       receive a single scalar value should have a reference to the
       destination scalar given.  Fields which are intended to receive
       multiple values should reference the corresponding destination
       arrayref.

       You are responsible for validating your custom options once they have
       been parsed.  The post_configure_hook is a good place to do your
       validation.

       Some emails have asked why we use this "template" method.  The idea is
       that you are creating the the data structure to store the values in,
       and you are also creating a way to get the values into the data
       structure.  The template is the way to get the values to the servers
       data structure.	One of the possibilities (that probably isn't used
       that much) is that by letting you specify the mapping, you could build
       a nested data structure - even though the passed in arguments are flat.
       It also allows you to setup aliases to your names.

       For example, a basic structure might look like this:

	  $prop = $self->{'server'}

	  $prop->{'my_custom_option'} ||= undef;
	  $prop->{'my_custom_array'}  ||= [];

	  $template = {
	      my_custom_option => \ $prop->{'my_custom_option'},
	      mco	       => \ $prop->{'my_custom_option'}, # alias
	      my_custom_array  => $prop->{'my_custom_array'},
	      mca	       => $prop->{'my_custom_array'}, # an alias
	  };

	  $template->{'mco2'} = $template->{'mco'}; # another way to alias

       But you could also have more complex data:

	  $prop = $self->{'server'};

	  $prop->{'one_layer'} = {
	      two_layer => [
		  undef,
		  undef,
	      ],
	  };

	  $template = {
	      param1 => \ $prop->{'one_layer'}->{'two_layer'}->[0],
	      param2 => \ $prop->{'one_layer'}->{'two_layer'}->[1],
	  };

       This is of course a contrived example - but it does show that you can
       get the data from the flat passed in arguments to whatever type of
       structure you need - with only a little bit of effort.

DEFAULT ARGUMENTS FOR Net::Server
       The following arguments are available in the default "Net::Server" or
       "Net::Server::Single" modules.  (Other personalities may use additional
       parameters and may optionally not use parameters from the base class.)

	   Key		     Value		      Default
	   conf_file	     "filename"		      undef

	   log_level	     0-4		      2
	   log_file	     (filename|Sys::Syslog
			      |Log::Log4perl)	      undef

	   port		     \d+		      20203
	   host		     "host"		      "*"
	   ipv		     (4|6|*)		      *
	   proto	     (tcp|udp|unix)	      "tcp"
	   listen	     \d+		      SOMAXCONN

	   ## syslog parameters (if log_file eq Sys::Syslog)
	   syslog_logsock    (native|unix|inet|udp
			      |tcp|stream|console)    unix (on Sys::Syslog < 0.15)
	   syslog_ident	     "identity"		      "net_server"
	   syslog_logopt     (cons|ndelay|nowait|pid) pid
	   syslog_facility   \w+		      daemon

	   reverse_lookups   1			      undef
	   allow	     /regex/		      none
	   deny		     /regex/		      none
	   cidr_allow	     CIDR		      none
	   cidr_deny	     CIDR		      none

	   ## daemonization parameters
	   pid_file	     "filename"		      undef
	   chroot	     "directory"	      undef
	   user		     (uid|username)	      "nobody"
	   group	     (gid|group)	      "nobody"
	   background	     1			      undef
	   setsid	     1			      undef

	   no_close_by_child (1|undef)		      undef

	   ## See Net::Server::Proto::(TCP|UDP|UNIX|SSL|SSLeay|etc)
	   ## for more sample parameters.

       conf_file
	   Filename from which to read additional key value pair arguments for
	   starting the server.	 Default is undef.

	   There are two ways that you can specify a default location for a
	   conf_file.  The first is to pass the default value to the run
	   method as in:

	       MyServer->run({
		  conf_file => '/etc/my_server.conf',
	       });

	   If the end user passes in --conf_file=/etc/their_server.conf then
	   the value will be overridden.

	   The second way to do this was added in the 0.96 version.  It uses
	   the default_values method as in:

	       sub default_values {
		   return {
		       conf_file => '/etc/my_server.conf',
		   }
	       }

	   This method has the advantage of also being able to be overridden
	   in the run method.

	   If you do not want the user to be able to specify a conf_file at
	   all, you can pass conf_file to the new method when creating your
	   object:

	       MyServer->new({
		  conf_file => '/etc/my_server.conf',
	       })->run;

	   If passed this way, the value passed to new will "win" over any of
	   the other passed in values.

       log_level
	   Ranges from 0 to 4 in level.	 Specifies what level of error will be
	   logged.  "O" means logging is off.  "4" means very verbose.	These
	   levels should be able to correlate to syslog levels.	 Default is 2.
	   These levels correlate to syslog levels as defined by the following
	   key/value pairs: 0=>'err', 1=>'warning', 2=>'notice', 3=>'info',
	   4=>'debug'.

       log_file
	   Name of log file or log subsystem to be written to.	If no name is
	   given and the write_to_log_hook is not overridden, log goes to
	   STDERR.  Default is undef.

	   The log_file may also be the name of a Net::Server pluggable
	   logging class.  Net::Server is packaged with Sys::Syslog and
	   Log::Log4perl.  If the log_file looks like a module name, it will
	   have "Net::Server::Log::" added to the front and it will then be
	   required.  The package should provide an "initialize" class method
	   that returns a single function which will be used for logging.
	   This returned function will be passed log_level, and message.

	   If the magic name "Sys::Syslog" is used, all logging will take
	   place via the Net::Server::Log::Sys::Syslog module.	If syslog is
	   used the parameters "syslog_logsock", "syslog_ident", and
	   "syslog_logopt",and "syslog_facility" may also be defined.  See
	   Net::Server::Log::Sys::Syslog.

	   If the magic name "Log::Log4perl" is used, all logging will be
	   directed to the Log4perl system.  If used, the "log4perl_conf",
	   "log4perl_poll", "log4perl_logger" may also be defined. See
	   Net::Server::Log::Log::Log4per.

	   If a "log_file" is given or if "setsid" is set, STDIN and STDOUT
	   will automatically be opened to /dev/null and STDERR will be opened
	   to STDOUT.  This will prevent any output from ending up at the
	   terminal.

       pid_file
	   Filename to store pid of parent process.  Generally applies only to
	   forking servers.  Default is none (undef).

       port
	   See Net::Server::Proto for further examples of configuration.

	   Local port/socket on which to bind.	If it is a low port, the
	   process must start as root.	If multiple ports are given, all will
	   be bound at server startup.	May be of the form "host:port/proto",
	   "host:port/proto/ipv", "host:port", "port/proto", or "port", where
	   host represents a hostname residing on the local box, where port
	   represents either the number of the port (eg. "80") or the service
	   designation (eg. "http"), where ipv represents the IP protocol
	   version (IPv4 or IPv6 or IPv*) and where proto represents the
	   protocol to be used. See Net::Server::Proto.	 The following are
	   some valid port strings:

	       20203				# port only
	       localhost:20203			# host and port
	       localhost:http			# localhost bound to port 80
	       localhost:20203/tcp		# host, port, protocol
	       localhost:20203/tcp/IPv*		# host, port, protocol and family
	       localhost, 20203, tcp, IPv*	# same
	       localhost | 20203 | tcp | IPv*	# same
	       localhost:20203/IPv*		# bind any configured interfaces for IPv4 or 6 (default)
	       localhost:20203/IPv4/IPv6	# bind localhost on IPv4 and 6 (fails if it cannot do both)

	       *:20203				# bind all local interfaces

	   Additionally, when passed in the code (non-commandline, and non-
	   config), the port may be passed as a hashref or array hashrefs of
	   information:

	       port => {
		   host	 => 'localhost',
		   port	 => '20203',
		   ipv	 => 6,	   # IPv6 only
		   proto => 'udp', # UDP protocol
	       }

	       port => [{
		   host	 => '*',
		   port	 => '20203',
		   ipv	 => 4,	   # IPv4 only
		   proto => 'tcp', # (default)
	       }, {
		   host	 => 'localhost',
		   port	 => '20204',
		   ipv	 => '*',      # default - all IPv4 and IPv6 interfaces tied to localhost
		   proto => 'ssleay', # or ssl - Using SSL
	       }],

	   An explicit host given in a port specification overrides a default
	   binding address (a "host" setting, see below).  The host part may
	   be enclosed in square brackets, but when it is a numerical IPv6
	   address it should be enclosed in square brackets to avoid ambiguity
	   in parsing a port number, e.g.: "[::1]:80".	However you could also
	   use pipes, white space, or commas to separate these.	 Note that
	   host and port number must come first.

	   If the protocol is not specified, proto will default to the "proto"
	   specified in the arguments.	If "proto" is not specified there it
	   will default to "tcp".  If host is not specified, host will default
	   to "host" specified in the arguments.  If "host" is not specified
	   there it will default to "*".  Default port is 20203.
	   Configuration passed to new or run may be either a scalar
	   containing a single port number or an arrayref of ports.  If "ipv"
	   is not specified it will default to "*" (Any resolved addresses
	   under IPv4 or IPv6).

	   If you are working with unix sockets, you may also specify
	   "socket_file|unix" or "socket_file|type|unix" where type is
	   SOCK_DGRAM or SOCK_STREAM.

	   On systems that support it, a port value of 0 may be used to ask
	   the OS to auto-assign a port.  The value of the auto-assigned port
	   will be stored in the NS_port property of the
	   Net::Server::Proto::TCP object and is also available in the
	   sockport method.  When the server is processing a request, the
	   $self->{server}->{sockport} property contains the port that was
	   connected through.

       host
	   Local host or addr upon which to bind port.	If a value of '*' is
	   given, the server will bind that port on all available addresses on
	   the box.  The "host" argument provides a default local host address
	   if the "port" argument omits a host specification.  See
	   Net::Server::Proto. See IO::Socket.	Configuration passed to new or
	   run may be either a scalar containing a single host or an arrayref
	   of hosts - if the hosts array is shorter than the ports array, the
	   last host entry will be used to augment the hosts arrary to the
	   size of the ports array.

	   If an IPv4 address is passed, an IPv4 socket will be created.  If
	   an IPv6 address is passed, an IPv6 socket will be created.  If a
	   hostname is given, Net::Server will look at the value of ipv
	   (default IPv4) to determine which type of socket to create.
	   Optionally the ipv specification can be passed as part of the
	   hostname.

	       host => "127.0.0.1",  # an IPv4 address

	       host => "::1",	     # an IPv6 address

	       host => 'localhost',  # addresses matched by localhost (default any IPv4 and/or IPv6)

	       host => 'localhost/IPv*',  # same

	       ipv  => 6,
	       host => 'localhost',  # addresses matched by localhost (IPv6)

	       ipv  => 4,
	       host => 'localhost',  # addresses matched by localhost (IPv4)

	       ipv  => 'IPv4 IPv6',
	       host => 'localhost',  # addresses matched by localhost (requires IPv6 and IPv4)

	       host => '*',	     # any local interfaces (any IPv6 or IPv4)

	       host => '*/IPv*',     # same (any IPv6 or IPv4)

	       ipv  => 4,
	       host => '*',	     # any local IPv4 interfaces interfaces

       proto
	   See Net::Server::Proto.  Protocol to use when binding ports.	 See
	   IO::Socket.	As of release 2.0, Net::Server supports tcp, udp, and
	   unix, unixdgram, ssl, and ssleay.  Other types will need to be
	   added later (or custom modules extending the Net::Server::Proto
	   class may be used).	Configuration passed to new or run may be
	   either a scalar containing a single proto or an arrayref of protos
	   - if the protos array is shorter than the ports array, the last
	   proto entry will be used to augment the protos arrary to the size
	   of the ports array.

	   Additionally the proto may also contain the ipv specification.

       ipv (IPv4 and IPv6)
	   See Net::Server::Proto.

	   IPv6 is now available under Net::Server.  It will be used
	   automatically if an IPv6 address is passed, or if the ipv is set
	   explicitly to IPv6, or if ipv is left as the default value of IPv*.
	   This is a significant change from version 2.004 and earlier where
	   the default value was IPv4.	However, the previous behavior led to
	   confusion on IPv6 only hosts, and on hosts that only had IPv6
	   entries for a local hostname.  Trying to pass an IPv4 address when
	   ipv is set to 6 (only 6 - not * or 4) will result in an error.

	       localhost:20203 # will use IPv6 if there is a corresponding entry for localhost
			       # it will also use IPv4 if there is a corresponding v4 entry for localhost

	       localhost:20203:IPv*  # same (default)

	       localhost:20203:IPv6  # will use IPv6

	       [::1]:20203	     # will use IPv6 (IPv6 style address)

	       localhost:20203:IPv4  # will use IPv4

	       127.0.0.1:20203	     # will use IPv4 (IPv4 style address

	       localhost:20203:IPv4:IPv6 # will bind to both v4 and v6 - fails otherwise

	       # or as a hashref as
	       port => {
		   host => "localhost",
		   ipv	=> 6, # only binds IPv6
	       }

	       port => {
		   host => "localhost",
		   ipv	=> 4, # only binds IPv4
	       }

	       port => {
		   host => "::1",
		   ipv	=> "IPv6", # same as passing "6"
	       }

	       port => {
		   host => "localhost/IPv*",	   # any IPv4 or IPv6
	       }

	       port => {
		   host => "localhost IPv4 IPv6",  # must create both
	       }

	   In many proposed Net::Server solutions, IPv* was enabled by
	   default.  For versions 2.000 through 2.004, the previous default of
	   IPv4 was used.  We have attempted to make it easy to set IPv4,
	   IPv6, or IPv*.  If you do not want or need IPv6, simply set ipv to
	   4, pass IPv4 along in the port specification, set $ENV{'IPV'}=4;
	   before running the server, or uninstall IO::Socket::INET6.

	   On my local box the following command results in the following
	   output:

	       perl -e 'use base qw(Net::Server); main->run(host => "localhost")'

	       Resolved [localhost]:20203 to [::1]:20203, IPv6
	       Resolved [localhost]:20203 to [127.0.0.1]:20203, IPv4
	       Binding to TCP port 20203 on host ::1 with IPv6
	       Binding to TCP port 20203 on host 127.0.0.1 with IPv4

	   My local box has IPv6 enabled and there are entries for localhost
	   on both IPv6 ::1 and IPv4 127.0.0.1.	 I could also choose to
	   explicitly bind ports rather than depending upon ipv => "*" to
	   resolve them for me as in the following:

	       perl -e 'use base qw(Net::Server); main->run(port => [20203,20203], host => "localhost", ipv => [4,6])'

	       Binding to TCP port 20203 on host localhost with IPv4
	       Binding to TCP port 20203 on host localhost with IPv6

	   There is a special case of using host => "*" as well as ipv => "*".
	   The Net::Server::Proto::_bindv6only method is used to check the
	   system setting for "sysctl -n net.ipv6.bindv6only" (or
	   net.inet6.ip6.v6only).  If this setting is false, then an IPv6
	   socket will listen for the corresponding IPv4 address.  For example
	   the address [::] (IPv6 equivalent of INADDR_ANY) will also listen
	   for 0.0.0.0.	 The address ::FFFF:127.0.0.1 (IPv6) would also listen
	   to 127.0.0.1 (IPv4).	 In this case, only one socket will be created
	   because it will handle both cases (an error is returned if an
	   attempt is made to listen to both addresses when bindv6only is
	   false).

	   However, if net.ipv6.bindv6only (or equivalent) is true, then a
	   hostname (such as *) resolving to both a IPv4 entry as well as an
	   IPv6 will result in both an IPv4 socket as well as an IPv6 socket.

	   On my linux box which defaults to net.ipv6.bindv6only=0, the
	   following is output.

	       perl -e 'use base qw(Net::Server); main->run(host => "*")'

	       Resolved [*]:8080 to [::]:8080, IPv6
	       Not including resolved host [0.0.0.0] IPv4 because it will be handled by [::] IPv6
	       Binding to TCP port 8080 on host :: with IPv6

	   If I issue a "sudo /sbin/sysctl -w net.ipv6.bindv6only=1", the
	   following is output.

	       perl -e 'use base qw(Net::Server); main->run(host => "*")'

	       Resolved [*]:8080 to [0.0.0.0]:8080, IPv4
	       Resolved [*]:8080 to [::]:8080, IPv6
	       Binding to TCP port 8080 on host 0.0.0.0 with IPv4
	       Binding to TCP port 8080 on host :: with IPv6

	   BSD differs from linux and generally defaults to
	   net.inet6.ip6.v6only=0.  If it cannot be determined on your OS, it
	   will default to false and the log message will change from "it will
	   be handled" to "it should be handled" (if you have a non-resource
	   intensive way to check on your platform, feel free to email me).
	   Be sure to check the logs as you test your server to make sure you
	   have bound the ports you desire.  You can always pass in individual
	   explicit IPv4 and IPv6 port specifications if you need.  For
	   example, if your system has both IPv4 and IPv6 interfaces but you'd
	   only like to bind to IPv6 entries, then you should use a hostname
	   of [::] instead of [*].

	   If bindv6only (or equivalent) is false, and you receive an IPv4
	   connection on a bound IPv6 port, the textual representation of the
	   peer's IPv4 address will typically be in a form of an IPv4-mapped
	   IPv6 addresses, e.g. "::FFFF:127.0.0.1" .

	   The ipv parameter was chosen because it does not conflict with any
	   other existing usage, it is very similar to ipv4 or ipv6, it allows
	   for user code to not need to know about Socket::AF_INET or
	   Socket6::AF_INET6 or Socket::AF_UNSPEC, and it is short.

       listen
	   See IO::Socket.  Not used with udp protocol (or UNIX SOCK_DGRAM).

       reverse_lookups
	   Specify whether to lookup the hostname of the connected IP.
	   Information is cached in server object under "peerhost" property.
	   Default is to not use reverse_lookups (undef).

       allow/deny
	   May be specified multiple times.  Contains regex to compare to
	   incoming peeraddr or peerhost (if reverse_lookups has been
	   enabled).  If allow or deny options are given, the incoming client
	   must match an allow and not match a deny or the client connection
	   will be closed.  Defaults to empty array refs.

       cidr_allow/cidr_deny
	   May be specified multiple times.  Contains a CIDR block to compare
	   to incoming peeraddr.  If cidr_allow or cidr_deny options are
	   given, the incoming client must match a cidr_allow and not match a
	   cidr_deny or the client connection will be closed.  Defaults to
	   empty array refs.

       chroot
	   Directory to chroot to after bind process has taken place and the
	   server is still running as root.  Defaults to undef.

       user
	   Userid or username to become after the bind process has occured.
	   Defaults to "nobody."  If you would like the server to run as root,
	   you will have to specify "user" equal to "root".

       group
	   Groupid or groupname to become after the bind process has occured.
	   Defaults to "nobody."  If you would like the server to run as root,
	   you will have to specify "group" equal to "root".

       background
	   Specifies whether or not the server should fork after the bind
	   method to release itself from the command line.  Defaults to undef.
	   Process will also background if "setsid" is set.

       setsid
	   Specifies whether or not the server should fork after the bind
	   method to release itself from the command line and then run the
	   "POSIX::setsid()" command to truly daemonize.  Defaults to undef.
	   If a "log_file" is given or if "setsid" is set, STDIN and STDOUT
	   will automatically be opened to /dev/null and STDERR will be opened
	   to STDOUT.  This will prevent any output from ending up at the
	   terminal.

       no_close_by_child
	   Boolean.  Specifies whether or not a forked child process has
	   permission or not to shutdown the entire server process.  If set to
	   1, the child may NOT signal the parent to shutdown all children.
	   Default is undef (not set).

       no_client_stdout
	   Boolean.  Default undef (not set).  Specifies that STDIN and STDOUT
	   should not be opened on the client handle once a connection has
	   been accepted.  By default the Net::Server will open STDIN and
	   STDOUT on the client socket making it easier for many types of
	   scripts to read directly from and write directly to the socket
	   using normal print and read methods.	 Disabling this is useful on
	   clients that may be opening their own connections to STDIN and
	   STDOUT.

	   This option has no affect on STDIN and STDOUT which has a magic
	   client property that is tied to the already open STDIN and STDOUT.

       leave_children_open_on_hup
	   Boolean.  Default undef (not set).  If set, the parent will not
	   attempt to close child processes if the parent receives a SIG HUP.
	   The parent will rebind the the open port and begin tracking a fresh
	   set of children.

	   Children of a Fork server will exit after their current request.
	   Children of a Prefork type server will finish the current request
	   and then exit.

	   Note - the newly restarted parent will start up a fresh set of
	   servers on fork servers.  The new parent will attempt to keep track
	   of the children from the former parent but custom communication
	   channels (open pipes from the child to the old parent) will no
	   longer be available to the old child processes.  New child
	   processes will still connect properly to the new parent.

       sig_passthrough
	   Default none.  Allow for passing requested signals through to
	   children.  Takes a single signal name, a comma separated list of
	   names, or an arrayref of signal names.  It first sends the signals
	   to the children before calling any currently registered signal by
	   that name.

       tie_client_stdout
	   Default undef.  If set will use Net::Server::TiedHandle tied
	   interface for STDIN and STDOUT.  This interface allows SSL and
	   SSLEAY to work.  It also allows for intercepting read and write via
	   the tied_stdin_callback and tied_stdout_callback.

       tied_stdin_callback
	   Default undef.  Called during a read of STDIN data if
	   tie_client_stdout has been set, or if the client handle's
	   tie_stdout method returns true.  It is passed the client
	   connection, the name of the method that would be called, and the
	   arguments that are being passed.  The callback is then responsible
	   for calling that method on the handle or for performing some other
	   input operation.

       tied_stdout_callback
	   Default undef.  Called during a write of data to STDOUT if
	   tie_client_stdout has been set, or if the client handle's
	   tie_stdout method returns true.  It is passed the client
	   connection, the name of the method that would be called, and the
	   arguments that are being passed.  The callback is then responsible
	   for calling that method on the handle or for performing some other
	   output operation.

PROPERTIES
       All of the "ARGUMENTS" listed above become properties of the server
       object under the same name.  These properties, as well as other
       internal properties, are available during hooks and other method calls.

       The structure of a Net::Server object is shown below:

	   $self = bless({
	       server => {
		   key1 => 'val1',
		   # more key/vals
	       },
	   }, 'Net::Server');

       This structure was chosen so that all server related properties are
       grouped under a single key of the object hashref.  This is so that
       other objects could layer on top of the Net::Server object class and
       still have a fairly clean namespace in the hashref.

       You may get and set properties in two ways.  The suggested way is to
       access properties directly via

	   my $val = $self->{server}->{key1};

       Accessing the properties directly will speed the server process -
       though some would deem this as bad style.  A second way has been
       provided for object oriented types who believe in methods.  The second
       way consists of the following methods:

	   my $val = $self->get_property( 'key1' );
	   my $self->set_property( key1 => 'val1' );

       Properties are allowed to be changed at any time with caution (please
       do not undef the sock property or you will close the client
       connection).

CONFIGURATION FILE
       "Net::Server" allows for the use of a configuration file to read in
       server parameters.  The format of this conf file is simple key value
       pairs.  Comments and blank lines are ignored.

	   #-------------- file test.conf --------------

	   ### user and group to become
	   user	       somebody
	   group       everybody

	   # logging ?
	   log_file    /var/log/server.log
	   log_level   3
	   pid_file    /tmp/server.pid

	   # optional syslog directive
	   # used in place of log_file above
	   #log_file	   Sys::Syslog
	   #syslog_logsock unix
	   #syslog_ident   myserver
	   #syslog_logopt  pid|cons

	   # access control
	   allow       .+\.(net|com)
	   allow       domain\.com
	   deny	       a.+
	   cidr_allow  127.0.0.0/8
	   cidr_allow  192.0.2.0/24
	   cidr_deny   192.0.2.4/30

	   # background the process?
	   background  1

	   # ports to bind (this should bind
	   # 127.0.0.1:20205 on IPv6 and
	   # localhost:20204 on IPv4)
	   # See Net::Server::Proto
	   host	       127.0.0.1
	   ipv	       IPv6
	   port	       localhost:20204/IPv4
	   port	       20205

	   # reverse lookups ?
	   # reverse_lookups on

	 #-------------- file test.conf --------------

PROCESS FLOW
       The process flow is written in an open, easy to override, easy to hook,
       fashion.	 The basic flow is shown below.	 This is the flow of the
       "$self->run" method.

	   $self->configure_hook;

	   $self->configure(@_);

	   $self->post_configure;

	   $self->post_configure_hook;

	   $self->pre_bind;

	   $self->bind;

	   $self->post_bind_hook;

	   $self->post_bind;

	   $self->pre_loop_hook;

	   $self->loop;

	   ### routines inside a standard $self->loop
	   # $self->accept;
	   # $self->run_client_connection;
	   # $self->done;

	   $self->pre_server_close_hook;

	   $self->server_close;

       The server then exits.

       During the client processing phase ("$self->run_client_connection"),
       the following represents the program flow:

	   $self->post_accept;

	   $self->get_client_info;

	   $self->post_accept_hook;

	   if ($self->allow_deny
	       && $self->allow_deny_hook) {

	       $self->process_request;

	   } else {

	       $self->request_denied_hook;

	   }

	   $self->post_process_request_hook;

	   $self->post_process_request;

	   $self->post_client_connection_hook;

       The process then loops and waits for the next connection.  For a more
       in depth discussion, please read the code.

       During the server shutdown phase ("$self->server_close"), the following
       represents the program flow:

	   $self->close_children;  # if any

	   $self->post_child_cleanup_hook;

	   if (Restarting server) {
	       $self->restart_close_hook();
	       $self->hup_server;
	   }

	   $self->shutdown_sockets;

	   $self->server_exit;

MAIN SERVER METHODS
       "$self->run"
	   This method incorporates the main process flow.  This flow is
	   listed above.

	   The method run may be called in any of the following ways.

		MyPackage->run(port => 20201);

		MyPackage->new({port => 20201})->run;

		my $obj = bless {server=>{port => 20201}}, 'MyPackage';
		$obj->run;

	   The ->run method should typically be the last method called in a
	   server start script (the server will exit at the end of the ->run
	   method).

       "$self->configure"
	   This method attempts to read configurations from the commandline,
	   from the run method call, or from a specified conf_file (the
	   conf_file may be specified by passed in parameters, or in the
	   default_values).  All of the configured parameters are then stored
	   in the {"server"} property of the Server object.

       "$self->post_configure"
	   The post_configure hook begins the startup of the server.  During
	   this method running server instances are checked for, pid_files are
	   created, log_files are created, Sys::Syslog is initialized (as
	   needed), process backgrounding occurs and the server closes STDIN
	   and STDOUT (as needed).

       "$self->pre_bind"
	   This method is used to initialize all of the socket objects used by
	   the server.

       "$self->bind"
	   This method actually binds to the inialized sockets (or rebinds if
	   the server has been HUPed).

       "$self->post_bind"
	   During this method priveleges are dropped.  The INT, TERM, and QUIT
	   signals are set to run server_close.	 Sig PIPE is set to IGNORE.
	   Sig CHLD is set to sig_chld.	 And sig HUP is set to call sig_hup.

	   Under the Fork, PreFork, and PreFork simple personalities, these
	   signals are registered using Net::Server::SIG to allow for safe
	   signal handling.

       "$self->loop"
	   During this phase, the server accepts incoming connections.	The
	   behavior of how the accepting occurs and if a child process handles
	   the connection is controlled by what type of Net::Server
	   personality the server is using.

	   Net::Server and Net::Server single accept only one connection at a
	   time.

	   Net::Server::INET runs one connection and then exits (for use by
	   inetd or xinetd daemons).

	   Net::Server::MultiPlex allows for one process to simultaneously
	   handle multiple connections (but requires rewriting the
	   process_request code to operate in a more "packet-like" manner).

	   Net::Server::Fork forks off a new child process for each incoming
	   connection.

	   Net::Server::PreForkSimple starts up a fixed number of processes
	   that all accept on incoming connections.

	   Net::Server::PreFork starts up a base number of child processes
	   which all accept on incoming connections.  The server throttles the
	   number of processes running depending upon the number of requests
	   coming in (similar to concept to how Apache controls its child
	   processes in a PreFork server).

	   Read the documentation for each of the types for more information.

       "$self->server_close"
	   This method is called once the server has been signaled to end, or
	   signaled for the server to restart (via HUP), or the loop method
	   has been exited.

	   This method takes care of cleaning up any remaining child
	   processes, setting appropriate flags on sockets (for HUPing),
	   closing up logging, and then closing open sockets.

	   Can optionally be passed an exit value that will be passed to the
	   server_exit call.

       "$self->server_exit"
	   This method is called at the end of server_close.  It calls exit,
	   but may be overridden to do other items.  At this point all
	   services should be shut down.

	   Can optionally be passed an exit value that will be passed to the
	   exit call.

MAIN CLIENT CONNECTION METHODS
       "$self->run_client_connection"
	   This method is run after the server has accepted and received a
	   client connection.  The full process flow is listed above under
	   PROCESS FLOWS.  This method takes care of handling each client
	   connection.

       "$self->post_accept"
	   This method opens STDIN and STDOUT to the client socket.  This
	   allows any of the methods during the run_client_connection phase to
	   print directly to and read directly from the client socket.

       "$self->get_client_info"
	   This method looks up information about the client connection such
	   as ip address, socket type, and hostname (as needed).

       "$self->allow_deny"
	   This method uses the rules defined in the allow and deny
	   configuration parameters to determine if the ip address should be
	   accepted.

       "$self->process_request"
	   This method is intended to handle all of the client communication.
	   At this point STDIN and STDOUT are opened to the client, the ip
	   address has been verified.  The server can then interact with the
	   client connection according to whatever API or protocol the server
	   is implementing.  Note that the stub implementation uses STDIN and
	   STDOUT and will not work if the no_client_stdout flag is set.

	   This is the main method to override.

	   The default method implements a simple echo server that will repeat
	   whatever is sent.  It will quit the child if "quit" is sent, and
	   will exit the server if "exit" is sent.

	   As of version 2.000, the client handle is passed as an argument.

       "$self->post_process_request"
	   This method is used to clean up the client connection and to handle
	   any parent/child accounting for the forking servers.

HOOKS
       "Net::Server" provides a number of "hooks" allowing for servers layered
       on top of "Net::Server" to respond at different levels of execution
       without having to "SUPER" class the main built-in methods.  The
       placement of the hooks can be seen in the PROCESS FLOW section.

       Almost all of the default hook methods do nothing.  To use a hook you
       simply need to override the method in your subclass.  For example to
       add your own post_configure_hook you could do something like the
       following:

	   package MyServer;

	   sub post_configure_hook {
	       my $self = shift;
	       my $prop = $self->{'server'};

	       # do some validation here
	   }

       The following describes the hooks available in the plain Net::Server
       class (other flavors such as Fork or PreFork have additional hooks).

       "$self->configure_hook()"
	   This hook takes place immediately after the "->run()" method is
	   called.  This hook allows for setting up the object before any
	   built in configuration takes place.	This allows for custom
	   configurability.

       "$self->post_configure_hook()"
	   This hook occurs just after the reading of configuration parameters
	   and initiation of logging and pid_file creation.  It also occurs
	   before the "->pre_bind()" and "->bind()" methods are called.	 This
	   hook allows for verifying configuration parameters.

       "$self->post_bind_hook()"
	   This hook occurs just after the bind process and just before any
	   chrooting, change of user, or change of group occurs.  At this
	   point the process will still be running as the user who started the
	   server.

       "$self->pre_loop_hook()"
	   This hook occurs after chroot, change of user, and change of group
	   has occured.	 It allows for preparation before looping begins.

       "$self->can_read_hook()"
	   This hook occurs after a socket becomes readible on an
	   accept_multi_port request (accept_multi_port is used if there are
	   multiple bound ports to accept on, or if the "multi_port"
	   configuration parameter is set to true).  This hook is intended to
	   allow for processing of arbitrary handles added to the IO::Select
	   used for the accept_multi_port.  These handles could be added
	   during the post_bind_hook.  No internal support is added for
	   processing these handles or adding them to the IO::Socket.  Care
	   must be used in how much occurs during the can_read_hook as a long
	   response time will result in the server being susceptible to DOS
	   attacks.  A return value of true indicates that the Server should
	   not pass the readible handle on to the post_accept and
	   process_request phases.

	   It is generally suggested that other avenues be pursued for sending
	   messages via sockets not created by the Net::Server.

       "$self->post_accept_hook()"
	   This hook occurs after a client has connected to the server.	 At
	   this point STDIN and STDOUT are mapped to the client socket.	 This
	   hook occurs before the processing of the request.

       "$self->allow_deny_hook()"
	   This hook allows for the checking of ip and host information beyond
	   the "$self->allow_deny()" routine.  If this hook returns 1, the
	   client request will be processed, otherwise, the request will be
	   denied processing.

	   As of version 2.000, the client connection is passed as an
	   argument.

       "$self->request_denied_hook()"
	   This hook occurs if either the "$self->allow_deny()" or
	   "$self->allow_deny_hook()" have taken place.

       "$self->post_process_request_hook()"
	   This hook occurs after the processing of the request, but before
	   the client connection has been closed.

       "$self->post_client_connection_hook"
	   This is one final hook that occurs at the very end of the
	   run_client_connection method.  At this point all other methods and
	   hooks that will run during the run_client_connection have finished
	   and the client connection has already been closed.

	   item "$self->other_child_died_hook($pid)"

	   Net::Server takes control of signal handling and child process
	   cleanup; this makes it difficult to tell when a child process
	   terminates if that child process was not started by Net::Server
	   itself.  If Net::Server notices another child process dying that it
	   did not start, it will fire this hook with the PID of the
	   terminated process.

       "$self->pre_server_close_hook()"
	   This hook occurs before the server begins shutting down.

       "$self->write_to_log_hook"
	   This hook handles writing to log files.  The default hook is to
	   write to STDERR, or to the filename contained in the parameter
	   "log_file".	The arguments passed are a log level of 0 to 4 (4
	   being very verbose), and a log line.	 If log_file is equal to
	   "Sys::Syslog", then logging will go to Sys::Syslog and will bypass
	   the write_to_log_hook.

       "$self->fatal_hook"
	   This hook occurs when the server has encountered an unrecoverable
	   error.  Arguments passed are the error message, the package, file,
	   and line number.  The hook may close the server, but it is
	   suggested that it simply return and use the built in shut down
	   features.

       "$self->post_child_cleanup_hook"
	   This hook occurs in the parent server process after all children
	   have been shut down and just before the server either restarts or
	   exits.  It is intended for additional cleanup of information.  At
	   this point pid_files and lockfiles still exist.

       "$self->restart_open_hook"
	   This hook occurs if a server has been HUPed (restarted via the HUP
	   signal.  It occurs just before reopening to the filenos of the
	   sockets that were already opened.

       "$self->restart_close_hook"
	   This hook occurs if a server has been HUPed (restarted via the HUP
	   signal.  It occurs just before restarting the server via exec.

       "$self->child_init_hook()"
	   This hook is called during the forking servers.  It is also called
	   during run_dequeue.	It runs just after the fork and after signals
	   have been cleaned up.  If it is a dequeue process, the string
	   'dequeue' will be passed as an argument.

	   If your child processes will be needing random numbers, this hook
	   is a good location to initialize srand (forked processes maintain
	   the same random seed unless changed).

	       sub child_init_hook {
		   # from perldoc -f srand
		   srand(time ^ $$ ^ unpack "%L*", `ps axww | gzip -f`);
	       }

       "$self->pre_fork_hook()"
	   Similar to the child_init_hook, but occurs just before the fork.

       "$self->child_finish_hook()"
	   Similar to the child_init_hook, but ran when the forked process is
	   about to finish up.

OTHER METHODS
       "$self->default_values"
	   Allow for returning configuration values that will be used if no
	   other value could be found.

	   Should return a hashref.

	       sub default_values {
		   return {
		       port => 20201,
		   };
	       }

       "$self->handle_syslog_error"
	   Called when log_file is set to 'Sys::Syslog' and an error occurs
	   while writing to the syslog.	 It is passed two arguments, the value
	   of $@, and an arrayref containing the arguments that were passed to
	   the log method when the error occured.

       "$self->log"
	   Parameters are a log_level and a message.

	   If log_level is set to 'Sys::Syslog', the parameters may
	   alternately be a log_level, a format string, and format string
	   parameters.	(The second parameter is assumed to be a format string
	   if additional arguments are passed along).  Passing arbitrary
	   format strings to Sys::Syslog will allow the server to be
	   vulnerable to exploit.  The server maintainer should make sure that
	   any string treated as a format string is controlled.

	       # assuming log_file = 'Sys::Syslog'

	       $self->log(1, "My Message with %s in it");
	       # sends "%s", "My Message with %s in it" to syslog

	       $self->log(1, "My Message with %s in it", "Foo");
	       # sends "My Message with %s in it", "Foo" to syslog

	   If log_file is set to a file (other than Sys::Syslog), the message
	   will be appended to the log file by calling the write_to_log_hook.

	   If the log_file is Sys::Syslog and an error occurs during write,
	   the handle_syslog_error method will be called and passed the error
	   exception.  The default option of handle_syslog_error is to die -
	   but could easily be told to do nothing by using the following code
	   in your subclassed server:

	       sub handle_syslog_error {}

	   It the log had been closed, you could attempt to reopen it in the
	   error handler with the following code:

	       sub handle_syslog_error {
		   my $self = shift;
		   $self->open_syslog;
	       }

       "$self->new"
	   As of Net::Server 0.91 there is finally a "new" method.  This
	   method takes a class name and an argument hashref as parameters.
	   The argument hashref becomes the "server" property of the object.

	       package MyPackage;
	       use base qw(Net::Server);

	       my $obj = MyPackage->new({port => 20201});

	       # same as

	       my $obj = bless {server => {port => 20201}}, 'MyPackage';

       "$self->open_syslog"
	   Called during post_configure when the log_file option is set to
	   'Sys::Syslog'.  By default it use the parsed configuration options
	   listed in this document.  If more custom behavior is desired, the
	   method could be overridden and Sys::Syslog::openlog should be
	   called with the custom parameters.

       "$self->shutdown_sockets"
	   This method will close any remaining open sockets.  This is called
	   at the end of the server_close method.

RESTARTING
       Each of the server personalities (except for INET), support restarting
       via a HUP signal (see "kill -l").  When a HUP is received, the server
       will close children (if any), make sure that sockets are left open, and
       re-exec using the same commandline parameters that initially started
       the server.  (Note: for this reason it is important that @ARGV is not
       modified until "->run" is called).

       The Net::Server will attempt to find out the commandline used for
       starting the program.  The attempt is made before any configuration
       files or other arguments are processed.	The outcome of this attempt is
       stored using the method "->commandline".	 The stored commandline may
       also be retrieved using the same method name.  The stored contents will
       undoubtedly contain Tainted items that will cause the server to die
       during a restart when using the -T flag (Taint mode).  As it is
       impossible to arbitrarily decide what is taint safe and what is not,
       the individual program must clean up the tainted items before doing a
       restart.

	   sub configure_hook{
	       my $self = shift;

	       ### see the contents
	       my $ref	= $self->commandline;
	       use Data::Dumper;
	       print Dumper $ref;

	       ### arbitrary untainting - VERY dangerous
	       my @untainted = map {/(.+)/;$1} @$ref;

	       $self->commandline(\@untainted)
	   }

SHUTDOWN
       Each of the Fork and PreFork personalities support graceful shutdowns
       via the QUIT signal.  When a QUIT is received, the parent will signal
       the children and then wait for them to exit.

       All server personalities support the normal TERM and INT signal
       shutdowns.

HOT DEPLOY
       Since version 2.000, the Fork and PreFork personalities have accepted
       the TTIN and TTOU signals.  When a TTIN is received, the max_servers is
       increased by 1.	If a TTOU signal is received the max_servers is
       decreased by 1.	This allows for adjusting the number of handling
       processes without having to restart the server.

       If the log_level is set to at 3, then the new value is displayed in the
       logs.

FILES
       The following files are installed as part of this distribution.

	   Net/Server.pm
	   Net/Server/Fork.pm
	   Net/Server/INET.pm
	   Net/Server/MultiType.pm
	   Net/Server/PreForkSimple.pm
	   Net/Server/PreFork.pm
	   Net/Server/Single.pm
	   Net/Server/Daemonize.pm
	   Net/Server/SIG.pm
	   Net/Server/Proto.pm
	   Net/Server/Proto/*.pm

INSTALL
       Download and extract tarball before running these commands in its base
       directory:

	   perl Makefile.PL
	   make
	   make test
	   make install

AUTHOR
       Paul Seamons <paul at seamons.com>

THANKS
       Thanks to Rob Brown (bbb at cpan.org) for help with miscellaneous
       concepts such as tracking down the serialized select via flock ala
       Apache and the reference to IO::Select making multiport servers
       possible.  And for researching into allowing sockets to remain open
       upon exec (making HUP possible).

       Thanks to Jonathan J. Miner <miner at doit.wisc.edu> for patching a
       blatant problem in the reverse lookups.

       Thanks to Bennett Todd <bet at rahul.net> for pointing out a problem in
       Solaris 2.5.1 which does not allow multiple children to accept on the
       same port at the same time.  Also for showing some sample code from
       Viktor Duchovni which now represents the semaphore option of the
       serialize argument in the PreFork server.

       Thanks to traveler and merlyn from http://perlmonks.org for pointing me
       in the right direction for determining the protocol used on a socket
       connection.

       Thanks to Jeremy Howard <j+daemonize at howard.fm> for numerous
       suggestions and for work on Net::Server::Daemonize.

       Thanks to Vadim <vadim at hardison.net> for patches to implement
       parent/child communication on PreFork.pm.

       Thanks to Carl Lewis for suggesting "-" in user names.

       Thanks to Slaven Rezic for suggesing Reuse => 1 in Proto::UDP.

       Thanks to Tim Watt for adding udp_broadcast to Proto::UDP.

       Thanks to Christopher A Bongaarts for pointing out problems with the
       Proto::SSL implementation that currently locks around the socket accept
       and the SSL negotiation. See Net::Server::Proto::SSL.

       Thanks to Alessandro Zummo for pointing out various bugs including some
       in configuration, commandline args, and cidr_allow.

       Thanks to various other people for bug fixes over the years.  These and
       future thank-you's are available in the Changes file as well as CVS
       comments.

       Thanks to Ben Cohen and tye (on Permonks) for finding and diagnosing
       more correct behavior for dealing with re-opening STDIN and STDOUT on
       the client handles.

       Thanks to Mark Martinec for trouble shooting other problems with STDIN
       and STDOUT (he proposed having a flag that is now the no_client_stdout
       flag).

       Thanks to David (DSCHWEI) on cpan for asking for the nofatal option
       with syslog.

       Thanks to Andreas Kippnick and Peter Beckman for suggesting leaving
       open child connections open during a HUP (this is now available via the
       leave_children_open_on_hup flag).

       Thanks to LUPE on cpan for helping patch HUP with taint on.

       Thanks to Michael Virnstein for fixing a bug in the check_for_dead
       section of PreFork server.

       Thanks to Rob Mueller for patching PreForkSimple to only open lock_file
       once during parent call.	 This patch should be portable on systems
       supporting flock.  Rob also suggested not closing STDIN/STDOUT but
       instead reopening them to /dev/null to prevent spurious warnings.  Also
       suggested short circuit in post_accept if in UDP.  Also for cleaning up
       some of the child managment code of PreFork.

       Thanks to Mark Martinec for suggesting additional log messages for
       failure during accept.

       Thanks to Bill Nesbitt and Carlos Velasco for pointing out double
       decrement bug in PreFork.pm (rt #21271)

       Thanks to John W. Krahn for pointing out glaring precended with non-
       parened open and ||.

       Thanks to Ricardo Signes for pointing out setuid bug for perl 5.6.1 (rt
       #21262).

       Thanks to Carlos Velasco for updating the Syslog options (rt #21265).
       And for additional fixes later.

       Thanks to Steven Lembark for pointing out that no_client_stdout wasn't
       working with the Multiplex server.

       Thanks to Peter Beckman for suggesting allowing Sys::SysLog keyworks be
       passed through the ->log method and for suggesting we allow more types
       of characters through in syslog_ident.  Also to Peter Beckman for
       pointing out that a poorly setup localhost will cause tests to hang.

       Thanks to Curtis Wilbar for pointing out that the Fork server called
       post_accept_hook twice.	Changed to only let the child process call
       this, but added the pre_fork_hook method.

       And just a general Thanks You to everybody who is using Net::Server or
       who has contributed fixes over the years.

       Thanks to Paul Miller for some ->autoflush, FileHandle fixes.

       Thanks to Patrik Wallstrom for suggesting handling syslog errors
       better.

       Thanks again to Rob Mueller for more logic cleanup for child accounting
       in PreFork server.

       Thanks to David Schweikert for suggesting handling setlogsock a little
       better on newer versions of Sys::Syslog (>= 0.15).

       Thanks to Mihail Nasedkin for suggesting adding a hook that is now
       called post_client_connection_hook.

       Thanks to Graham Barr for adding the ability to set the check_for_spawn
       and min_child_ttl settings of the PreFork server.

       Thanks to Daniel Kahn Gillmor for adding the other_child_died_hook.

       Thanks to Dominic Humphries for helping not kill pid files on HUP.

       Thanks to Kristoffer Mollerhoj for fixing UDP on Multiplex.

       Thanks to mishikal for patches for helping identify un-cleaned up
       children.

       Thanks to rpkelly and tim@retout for pointing out error in header regex
       of HTTP.

       Thanks to dmcbride for some basic HTTP parsing fixes, as well as for
       some broken tied handle fixes.

       Thanks to Gareth for pointing out glaring bug issues with broken pipe
       and semaphore serialization.

       Thanks to CATONE for sending the idea for arbitrary signal passing to
       children.  (See the sig_passthrough option)

       Thanks to intrigeri@boum for pointing out and giving code ideas for
       NS_port not functioning after a HUP.

       Thanks to Sergey Zasenko for adding sysread/syswrite support to SSLEAY
       as well as the base test.

       Thanks to mbarbon@users. for adding tally dequeue to prefork server.

       Thanks to stefanos@cpan for fixes to PreFork under Win32

       Thanks to Mark Martinec for much of the initial work towards getting
       IPv6 going.

       Thanks to the munin developers and Nicolai Langfeldt for hosting the
       development verion of Net::Server for so long and for fixes to the
       allow_deny checking for IPv6 addresses.

       Thanks to Tatsuhiko Miyagawa for feedback, and for suggesting adding
       graceful shutdowns and hot deploy (max_servers adjustment).

       Thanks to TONVOON@cpan for submitting a patch adding Log4perl
       functionality.

       Thanks to Miko O'Sullivan for fixes to HTTP to correct tainting issues
       and passing initial log fixes, and for patches to fix CLOSE on tied
       stdout and various other HTTP issues.

SEE ALSO
       Please see also Net::Server::Fork, Net::Server::INET,
       Net::Server::PreForkSimple, Net::Server::PreFork,
       Net::Server::MultiType, Net::Server::Single Net::Server::HTTP

TODO
       Improve test suite to fully cover code (using Devel::Cover).  Anybody
       that wanted to send me patches to the t/*.t tests that improved
       coverage would earn a big thank you.

AUTHOR
	   Paul Seamons <paul at seamons.com>
	   http://seamons.com/

	   Rob Brown <bbb at cpan.org>

LICENSE
       This package may be distributed under the terms of either the

	 GNU General Public License
	   or the
	 Perl Artistic License

       All rights reserved.

POD ERRORS
       Hey! The above document had some coding errors, which are explained
       below:

       Around line 1751:
	   Non-ASCII character seen before =encoding in 'Mollerhoj'. Assuming
	   UTF-8

perl v5.18.1			  2013-01-10			Net::Server(3)
[top]

List of man pages available for Mageia

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net